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A Casual Introduction to
Least-squares Fitting:
A [mostly] descriptive approach

Brian H. Toby
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Outline

 Linear Algebra: a cheap intro
 Least-Squares Minimization

– Linear
– Non-linear

 Least-square’s weakness: Correlation
 Uncertainty estimation for fitted parameters
 Resistance: one bad point can do you in
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Linear Algebra: for solution of simultaneous equations

 Linear Algebra provides a compact way to deal with simultaneous equations:

A11x1 + A12x2 + A13x3 + … A1mxm = b1

A21x1 + A22x2 + A23x3 + … A2mxm = b2

An1x1 + An2x2 + An3x3 + … Anmxm = bn

or  equivalently with n equations, Σj Aijxj = bi, where we want to find the xj
values knowing Aij and bi

can be written as A x = b where
• A is a (n by m) matrix;
• b is a column vector(or m by 1 matrix)
• x is a row vector(or 1 by n matrix)

 Solving for x:    A-1A x = A-1b     or   x = A-1b
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Linear Algebra

 Matrix A with m rows and n columns is composed of n×m
elements Aij:

 Matrix multiplication: C = A B, Cij = Σk Aik Bkj

Note that in general, A B ≠  B A,

 Matrix transpose, AT

– if B = AT  then Bij = Aji
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Matrix Inversion

 Identity Matrix:
– diagonal elements = 1
– off-diagonal elements = 0

 Inverse of Matrix: A-1 A = 1

 Inverse of 3x3 matrix
(from wikopedia)
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Summary: Part 1

 You have now had a very brief introduction to linear algebra and should
understand the concept of a matrix
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Singular Matrices

 If any column (or row) in a matrix is repeated, the matrix cannot be inverted.
The same is true if a column (or row) is repeated multiplied by a constant

 A matrix that cannot be inverted is called singular
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Nearly Singular Matrices

 When columns are nearly equivalent, we start subtracting numbers that are
almost equal from each other.

– This is a very bad thing in computer math as it causes round-off errors to be
increased.
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Round-off error example

∞-precision arithmetic:
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Summary: Part 2

 You should now understand that a singular matrix is one that cannot be inverted
 A matrix that is nearly singular in theory can be inverted, but in practice

inversion will be highly inaccurate due to round-off errors
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Terminology of Least-Squares

Data: n observations, yi, measured at independent variable setting xi

Model: a function that predicts the observations: Y(xi,p)
– Linear Model: Y(xi,p) = p1 f1(xi) + p2 f2(xi) + …
– Non-linear Model: Y(xi,p) = f(xi, p1, p2, …)

Parameters: m terms p1, p2, p3… pm that determine the values that are computed
from the model

Refine: Find values for parameters, p, to yield the best fit between the model
Y(xi,p) and observations yi

Best fit: Means the finding the minimum for Σ wi[yi - Y(xi,p)]2

where wi = [1 / σ(yi)]2  (Note: σ is standard uncertainty on yi)
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Linear Least-Squares

Linear Model: Y(xi,p) = p1 f1(xi) + p2 f2(xi) + … = Σk pk fk(xi)

 Goal: Find p1, p2, p3… pm that minimize Σiwi[yi - Y(xi,p)]2

set derivative w/r each parameter to zero: ∂/∂pj Σiwi[yi - Y(xi,p)]2 = 0
Gives m coupled equations: Σiwi yi ∂Y/∂pj = Σiwi Y(xi,p) ∂Y/∂pj

Note that ∂Y/∂pj = fj(xi) so the m coupled equations become:
  Σiwi yi fj(xi)  = Σiwi [Σk pk fk(xi)] fj(xi) = Σk pk Σiwi fk(xi) fj(xi)

Define: Aij = fj(xi) / σ(yi); bi = yi / σ(yi)
This gives m coupled equations: Σi bi Aij = Σk pk Σi Aij Aik

Recast using linear algebra: ATb = ATAp or solving for p:
(ATA)-1ATb = p      This allows the p values to be determined directly
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Non-Linear Least-Squares (Gauss-Newton)

 With a non-linear model, Y(xi,p) = f(xi, p1, p2, …), it is not possible to solve for p
 Remembering the Taylor expansion:

f(xi, p+δ) = f(xi, p) + δ(∂f/∂p) + δ2(∂2f/∂p2)/2 + …
 Multi-parameter Taylor expansion around approximate values for p:

 Y(xi, p1+δ1 , p2+δ2 ,…) = Y(xi, p1, p2,…) +  Σk δk(∂Y/∂pk) + Σk δk
2(∂2Y/∂pk

2)/2 + …
– as before, set ∂/∂pj Σiwi[yi - Y(xi,p)]2 = 0; solve for δk

m coupled equations: Σiwi [yi- Y(xi,p)] (∂Y/∂pj) = Σk δk Σiwi (∂Y/∂pk) (∂Y/∂pj)

Define: Aij = (∂Y(xi,p) /∂pj) / σ(yi);     bi = [yi - Y(xi,p)] / σ(yi)
This gives m coupled equations: Σi bi Aij = Σk δk Σi Aij Aik

Recast using linear algebra: ATb = ATA δ or (ATA)-1ATb = δ

Refinement is iterative process, starting from approximate p values
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More on Least-squares

A is called the Design Matrix: Aij = ∂Y/∂pj / σ(yi)
 H = ATA is called the Hessian Matrix
 The inverse of the Hessian, H-1 = (ATA)-1, is called the Covariance Matrix

(Einstein called it the Variance-Covariance Matrix)

 The Hessian measures, evaluated for all data points, how the model responds
to changes in parameters :

– Hij = Σk (∂Y/∂pi) (∂Y/∂pj) / σ(yk)
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Summary: Part 3

You should now understand
 the difference between linear and non-linear least squares
 why non-linear least squares is iterative and requires starting with approximate

values for parameters
 how LS refinement uses weights, differences and depends of the derivatives of

w/r to parameters
 commonly used terms: covariance matrix, Hessian matrix
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Correlation:

 If two (or more) parameters have the same effect on the model, the
derivatives are the same and the Hessian is singular

 If two (or more) parameters have very similar effects, the derivatives
are nearly the same and the Hessian is nearly singular -- round-off
dominates!

When parameters have similar effects on the fit they are said to be
correlated
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Correlation: the Achilles' Heel of Least-Squares

 Least-squares works best with parameters that have very different effects on the
model

 If parameters have exactly the same effect on the model (are completely
correlated), the p values cannot be determined

 Least-squares performs poorly when pi values have similar effects (are
correlated.)

So why use Least-Squares?
– If σ(yi) accurately describes the estimated error (standard uncertainty) in yi

and the model produces an ideal fit to the data (χ2≅1) then the diagonal
elements of the covariance matrix give the standard uncertainty in the
parameters: (ATA)-1

jj = σ(pj)
– Least-squares makes optimum use of data -- giving the result with the

smallest possible statistically uncertainty.
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Correlation: Example 1

Note that m and n have almost exactly the same effect
The least-squares refinement will be prone to diverge!

Fit  y = nsin(x) + mx + b (all x << π/2)

 y = mx + b  y = nsin(x) + b

In order to fit both m and n well: data over a wide range in x or
extremely precise data are needed
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vacancies Uiso increase

Note: with a smaller Q range, these changes would be even harder to
discern

Occupancies and displacement parameters correlate.
Why? Decreasing occupancy has a similar effect to increasing Uiso.

Correlation: Example 2

 Example: Simulate change in NaCl X-ray diffraction due to 20% Na vacancies or
due to a ×2.8 increase in Na Uiso.
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vacancies Uiso increase

Correlation: Neutrons vs. X-rays

Same example: NaCl with 20% Na vacancies or ×2.8 increase in Na Uiso but now
simulated with neutron diffraction (can discern much better)
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Correlation: Example 3

Fit  y = mx + b + c

Note: b & c are completely
equivalent

Since the effect of changing b & c is exactly the same, the Hessian
matrix cannot be inverted (is singular).

GSAS treats a singular Hessian by ignoring one of the two identical
variables.
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Exact correlation: Crystallographic Examples

 When symmetry is lowered, there will be complete correlation
between:
– [Formerly] equivalent unit cell constants
– Sets of  [formerly] equivalent atoms
– Either manually change the parameters to break the

equivalence or vary only one of the set to start.
 Vacancies are equivalent to partial substitution by a “lighter” atom
 Refining all atom positions in space groups with only translational

symmetry (arbitrary origin)
 Complete correlation occurs any time two (or more) parameters

have exactly the same effect on the fit.
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Summary: Part 4

You should now understand
 how exact correlation in parameters leads to a singular Hessian
 why highly correlated parameters leads to a very inaccurate inversion of the

Hessian – possibly causing a refinement to fail.
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Uncertainty estimation for derived parameters

 Statistical error estimates are computed using covariance matrix
– If σ(yi) accurately describes the estimated error (standard uncertainty) in yi

and the model produces an ideal fit to the data (χ2≅1) then the diagonal
elements of the covariance matrix give the standard uncertainty in the
parameters: H-1

jj = [σ(pj)]2

 For functions of fitted parameters, uncertainty also computed:
If s = f p then σ(s) = (H-1)T f H-1

– Used for bond distances & angles (DISAGL)
– Can also be used for total composition (from refined

occupancies, implemented in GEOMETRY)
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Least-Squares is not Resistant
Least-squares weighting assumes:

– uncertainty estimates on data are accurate
– model is accurate (no systematic errors) ““BadBad”” points skew points skew

refinementsrefinements

Robust-Resistant algorithms limit the maximum leverage a poorly fitting data point may have
(for example, by changing weighting.)
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Final Summary

You have now seen
 the strength of least-squares: error estimates for refined parameters
 that weights need to reflect the actual uncertainty on a observation or “bad data”

can yield a bad fit.

In conclusion:
 Linear algebra simplifies least squares fitting
 Understand how least squares fitting works
 Understand the strengths and weaknesses of least squares


